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SUMMARY 

This paper presents a self-learning method for the real-time calculation of the degree 
of cure and Tg in polymer composite molding using bootstrap aggregated neural 
networks  based and  recordedprocessing data such as the temperature and the 
electrical resistance of the resin. In order to improve model generalization capability, 
multiple neural networks are developed from bootstrap re-samples of the original 
data and are combined. The proposed method is successfully applied to real 
industrial data. 

 

1. INTRODUCTION 

Polymer composite materials have been increasingly used in many areas, for 
example, aerospace, automobile, and construction industries, due to their various 
advantages (1). The degree of cure and glass transition temperature are important 
parameter in reactive polymer composite molding processes. Only when the product 
is almost fully cured and the required glass transition temperature is reached the 
mould can be opened. Thus, modeling the degree of cure is very important in the 
control and optimization of reactive polymer composite molding processes. 
Development of detailed mechanistic models for the degree of cure is generally time 
consuming and effort demanding. Data based empirical modeling can be a very useful 
alternative in this case. Neural networks have been shown to be capable of 
approximating any continuous nonlinear functions (2) and have been applied to 
nonlinear process modeling (3, 4).   

 

A problem of conventional neural network is the lack of robustness and 
generalization capability due to limitation in training data and/or training methods. An 
effective approach to improve neural network model generalization is by combining 
multiple neural networks (5, 6, 7). The paper presents a study on using bootstrap 
aggregated neural networks for modeling the degree of cure and glass transition 
temperature of an industrial reactive polymer composite molding process. 

 

 



2. MODELLING OF REACTIVE POLYMER COMPOSITE MOLDING PROCESS 
USING NEURAL NETWORKS 

2.1 Bootstrap Aggregated Neural Networks 

A diagram of bootstrap aggregated neural networks is shown in Fig. 1, where several 
neural network models are developed to model the same relationship. Instead of 
selecting a “best” single neural network model, these individual neural networks are 
combined together to improve model accuracy and robustness. The overall output of 
the aggregated neural network is a weighted combination of the individual neural 
network outputs. This can be represented by the following equation. 
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where f(X) is the aggregated neural network predictor, fi(X) is the ith neural network, 
wi is the aggregating weight for combining the ith neural network, n is the number of 
neural networks, and X is a vector of neural network inputs. The aggregating weights 
can be obtained using a number of ways, such as simple averaging, i.e. the stacked 
neural network output is an average of the individual network outputs, or using 
principal component regression (PCR) (7). Instead of using constant stacking weights, 
the stacking weights can also dynamically change with the model inputs (8, 9). 
Another advantage of bootstrap aggregated neural network is that model prediction 
confidence bounds can be calculated from individual network predictions (10).  

 

Figure 1. A bootstrap aggregated neural network 

 

2.2 Modeling the Degree of Cure in an Industrial Polymer Composite Molding 
Process 

Neural network models were developed using industrial data from an EU research 
project – iREMO (intelligent reactive polymer composite molding). The process is for 
the manufacturing of automobile parts. The molding process is monitored using 
OptiMould which measures resistance. Data from 3 days of process operation during 
June 2011 were used to build and validate the neural network models. The data set 
contains 94 runs where constant curing temperature policy was applied. Variations in 
mould temperature exist due to exothermal effect. Data from 15 runs were selected as 
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the model building data, which were randomly split into training set (50%) and testing 
set (50%). The final developed model was tested on all other runs.  

 

The developed neural network based dynamic model is of the following form: 

 logR(t)=f(logR(t-1), logR(t-2),T)       (2) 

where R is the resistance, T is the average temperature during the first 4 minutes, t is 
discrete time, f() is a nonlinear function represented by the neural network.  

 

A bootstrap aggregated neural network containing 30 single hidden layer neural 
networks was developed. The number of hidden neurons in each network was 
determined through cross validation. The networks were trained with Levenberg-
Marquardt algorithm with regularization and early stopping. Figure 2 shows the 
predicted resistance on 4 selected unseen validation runs. In Figure 2, the actual 
measured resistances are shown as the solid lines, one-step-ahead predictions are 
shown as dash-dotted lines, and multi-step-ahead predictions are shown as the 
dashed lines. It can be seen that the neural network one-step-ahead predictions are 
very accurate. The multi-step-ahead predictions are also very accurate, though not 
as accurate as the one-step-ahead predictions.  

 

Figure 2. Dynamic neural network model predicted resistance on 4 unseen runs 

 

As the ultimate interests in monitoring and control of reactive polymer composite 
molding processes are concerned with the degree of cure and the glass transition 
temperature (Tg), it would be desirable that the neural network predicted resistance is 
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converted into the degree of cure and the glass transition temperature. The 
assumption made here is that the changes in the measured resistance reflect the 
changes in the degree of cure and Tg, which is the principle that OptiMould is based 
on.  

 

For a given molding temperature, the maximum degree of cure can be calculated 
using Eq(3) obtained by studies carried out within the iREMO project.  

T00145.0409.0max          (3) 

where T is the molding temperature and αmax is the maximum degree of cure under 

this molding temperature.  

 

Let the minimum and maximum predicted resistances in a curing cycle correspond to 
the minimum and maximum degrees of cure respectively, then the estimated degree 
of cure for a given predicted resistance can be obtained as: 
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where R̂  is the neural network model predicted resistance, minR̂  and 
maxR̂  are the 

minimum and maximum predicted resistance respectively, and αmax is the maximum 
degree of cure.  

From the estimated or predicted degree of cure, glass transition temperature can be 
obtained. The relationship between the degree of cure and the glass transition 
temperature is given by Eq(5).  
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where Tg is the glass transition temperature, α is the degree of cure, λ = 0.44,  Tg0 = 
241 K,  and Tg∞ = 427 K. By re-arranging Eq(5), the following equation for predicting 

glass transition temperature is obtained. 
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Neural network predictions of degree of cure and glass transition temperature from 
the neural network model on the unseen validation data are obtained using the 
predicted resistance shown in Figure 2, Eq(4), and Eq(6). Figure 3 shows the 
predicted degree of cure while Figure 4 shows the predicted Tg. In both figures, the 
actual values converted from the measured resistances are shown as the solid lines, 
one-step-ahead predictions are shown as dash-dotted lines, and multi-step-ahead 
predictions are shown as the dashed lines. It can be seen from Figures 3 and 4 that 
the predictions are very accurate.  



 

 

 

Figure 3. Dynamic neural network model predicted degree of cure on 4 unseen runs 

 

Figure 4. Dynamic neural network model predicted Tg on 4 unseen runs 
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4. Conclusions 

Modeling of an industrial reactive polymer composite molding process using bootstrap 
aggregated neural networks is presented in this paper. By combining multiple neural 
network models, model prediction accuracy and reliability are improved. Application 
results demonstrate that the developed neural network models can accurately predict 
the degree of cure and glass transition temperature. The developed neural network 
model can be used for calculating the optimal heating profile, determining when the 
mould can be opened, and product quality monitoring.  
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