

CURE MONITORING OF HIGH-TEMPERATURE RESINS FOR ENHANCING THE MANUFACTURING OF ADVANCED COMPOSITES

Dr N. Pantelelis, Synthesites SNC, Belgium W. Gerrits, R. Klomp-de Boer, NLR, The Netherlands A. Johnston, S. Wilson, A. McKibbin, Bombardier Aerospace, UK C. Brauner, F. Schadt, L. Amirova, M. Grob, FHNW, Switzerland

Customers (non exhaustive list)

Companies

On-going

Recotrans: (2017-2020) Multimaterial recyclable manufacturing for the transportation industry RTM and pultrusion, Glass fibre, reactive thermoplastic for automotive and rail applications Partners: Aimplas (CO), Fraunhofer, Daimler, Far UK, Stadler, INEA, Istanbul University, Arkema SuCoHS: (2018-2020) Sustainable and Cost Efficient High Performance Composite Structures demanding Temperature and Fire Resistance Partners: DLR (CO), Bombardier, Aernnova, NLR, ONERA, Apodius, Rockwell Collins

Completed

Ecomise: First-time right composites manufacturing (2013-2016) Partners: DLR (CO), Faser I., Bombardier, Hutchinson, Airborne, Loop, Dassault Systemes, NLR RTM and RTI, Glass and carbon fibre, epoxy Coaline: Injection pultrusion with microwave curing and injection of coatings (2013-2017) Fraunhofer ICT, Aimplas, Resoltech, Rescoll, Acciona iREMO: intelligent Reactive Moulding (2009-2012) RTM, Light RTM and Infusion, Glass and carbon fibre, epoxy and polyester MAC-RTM: Microwave curing (2011-2013), Fraunhofer ICT and Aimplas

Advantages of Process Monitoring in composites manufacturing

- Check resin quality and adjust process accordingly
- Detect accurately resin arrival at critical locations
 - Open/close valves based on sensors' feedback
- Monitor viscosity changes and decide when start heating
- Identify minimum viscosity and decide about pressure
- Detect unexpected events and follow alternative routes
- Improve simulation accuracy and design intelligent strategies
- Real-time decision of the cure cycle based on Tg and degree of cure (depends on the resin) rather than time

Intelligent automation in composites processing

OptiFlow Resin arrival, temperature

- 4 temperature and resin arrival sensors
- Resistance-based measurements and RTD temperature
- Continuous connection checking
- One relay output for process automation

Gate

In-mould

Durable

- flat areas
- possible mark

ideal for vacuum
infusion in oven/
autoclave (gates,
pipelines, pots etc.)

Flexible

- Curved surfaces
- In the laminate for development

FloWire

sensors

- Over the peel-ply
- Suitable for very long parts
- no extra protection for Carbon

Fibre Preforms

Optimold Cure, viscosity, resin quality check

Real-time measuring of

- Resin's electrical resistance (from 0.1 MOhm up to 50 TOhm)
- temperature (pt100 sensor with 0.1°C accuracy) Input of external signals e.g. pressure sensors

process monitoring sensor = electrical resistance + RTD sensors

High Temp RTM

- Resin arrival
- Viscosity rise
- Gelation
- End-of-cure

Flexible

- VI and RT cure
- Resin arrival
- Viscosity rise
- Gelation
- End-of-cure

• Avoid pipe cleaning

Inline sensor

- Adjust cycle
- Mixing ratio check

Pot sensor

Mixing ratio

Resin Quality

Resin aging

Adjust cycle

A typical RTM6 cure cycle as measured with Optimold

502-AH O502-AH 527-TUM2 527-TUM2 O110-AH O110-AH O110-AH O110-AH

8

On-line Resin State (ORS software)

From Resistance and Temperature

Online viscosity and Tg estimation

to

More than 25 resins have been calibrated for the whole range of advanced composites manufacturing

Verification of the real-time estimated Tg

Overview of the Tg estimated online with the ORS software and T_g measured right after demoulding by DSC and the difference between them for several isothermal and realistic test cases which shows that

the Tg online estimation is within the DSC accuracy

Trials and DSC performed by

published at SAMPE Journal, v.53/6, Nov/Dec 2017, pp. 6-10

	Trial	Duration [h]	T₅-ORS (°C)	T₅- DSC (°C)	Difference (°C)
Isothermal	80DV1	3	73.17	73.34	-0.17
	80DV3	2.5	70.30	70.91	-0.61
	80DV4	2.5	73.45	72.49	0.96
	80-120'	1.92	66.96	66.02	0.94
	80-90'-1	1.50	62.04	61.80	0.24
	80-90'-2	1.50	65.52	65.21	0.31
	80-D2-2	1.50	61.88	60.59	1.29
	60-260'	4.33	55.02	56.51	-1.49
	70-190'	3.17	64.92	65.39	-0.47
Isothermal cases, mean difference					1.61
Isothermal cases, stan dard deviation					2.42
Non-isothermal	TEB1-1		61.37	59.54	1.83
	TEB1-2		69.36	70.93	-1.58
	TEB2-1		60.00	58.64	1.36
	TEB2-2		70.02	70.30	-0.28
	LESW1-1		76.97	74.35	2.62
	TESW1		71.34	69.18	2.16
	Shell1-1		80.36	78.92	1.44
	Shell1-2		75.72	77.83	-2.12
	Shell2-1		79.60	77.70	1.89
Non-isothermal cases, mean difference					2.15
Non-isothermal cases, stan dard deviation					1.26

Intelligent Process control

Sensing online Resin aging and viscosity

Viscosity, Resistance and temperature vs. time for 4 resin batches of Cycom 890

Autoclave system (Bombardier Belfast) ECOMISE R&D project

Outside of the autoclave

Inside of the autoclave

Demonstration @ WPU Bombardier Belfast ECOMISE R&D project

228

Real-time Tg prediction and demoulding decision based on targeted Tg.

New durable sensor for cfrp production

A new durable sensor was developed to allow to measure CFRP production without the need of any extra protection e.g. glass fibre

Due to the unique surface measurement of the DC-based sensor no coating but specially shaped 1 electrodes were used

Extensive trials in a C-HPRTM application have shown very good results confirming that the use of this sensor in CFRP production is feasible

New higher temp sensor (max 250°C)

Resistance and temperature

A new higher-temp material was introduced in the disposable sensor to improve the high-temp performance of the sensor

First trials with a prepreg BMI sample sent by BAB demonstrated the improved performance of the sensor

Correlation between Cure and Resistivity

BMI Cytec 5250: Correlation between the expected Degree of Cure as simulated by a kinetic model and the recorded resistance during for the recommended temperature profile.

Cure monitoring of a Cyanate ester resin

Within SuCoHS, Cyanate ester resins were also monitored for the first time successfully by FHNW

18

- The online cure monitoring and quality control for high temperature resins was applied and verified successfully.
- The development of new high temperature sensors and calibration methods will lead to significant reduction of the curing time of advanced aerospace resins ensuring cure quality.
- ✓ Further development with SuCoHS project will allow disposable and durable sensors to work at temperatures up to 300°C (first step) and ultimately at 350°C.

in

SUSTAINABLE & COST EFFICIENT HIGH-PERFORMANCE COMPOSITE STRUCTURES DEMANDING TEMPERATURE AND FIRE RESISTANCE

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 769178.

<u>www.sucohs-project.eu</u>

Belgium

SYNTHESITES SNC

Av. du Lycée Français 5, Bte9 1180, Uccle Phone: +32 (0) 472 201 382 e-mail: <u>be@synthesites.com</u>

Greece

SYNTHESITES INNOVATIVE TECHNOLOGIES Ltd

Kyprion Agoniston 33, GR-185 41, Piraeus Phone: +30 210 42 12 274, e-mail: info@synthesites.com UK

SYNTHESITES UK LTD

31 Arden Close, Bristol, BS32 8AX Phone: +44 333 01 2468 1 e-mail: <u>uk@synthesites.com</u>

www.synthesites.com

